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Application of Curved Parametric Triangular

and Quadrilateral Edge Elements in the

Moment Method Solution of the EFIE
Ning Yan Zhu, Member, IEEE,, and Friedrich M. Landstorfer, Senior Member, IEEE

Abstract— The application is reported of curved parametric

triangular and quadrilateral edge elements, which have been
successfully applied in the finite-element method (FEM) in the last

10 years, as basis functions in the moment method (MM) solution
of the electric field integral equation (EFIE). In this way, an

arbitrarily shaped surface can be modeled more accurately than
with conventional planar patches. Consequently, higher accuracy
in the numerical solution can mostly be obtained, as demonstrated
by numerical examples.

I. INTRODUCTION

I N THE classical papers on the MM solution of the EFIE

for electromagnetic scattering from perfectly conducting

surfaces of arbitrary shape ([1], [2]), the importance of the

continuity of the normal current components across the bound-

ary of a patch in the basis functions has been pointed out,

and basis functions which fulfil this requirement have been

introduced for planar rectangular and triangular patches. Since

then, due to their ability of modeling general geometrical

shapes, these basis functions, especially the ones for planar

triangular patches, have found wide application.

For modeling an arbitnq surface, many planar triangular

patches may be necessary, however. As a remedy, curved

parametric patches could be used instead. Actually, as early

as 1972, curved parametric quadrilaterals with 9 nodes were

used to model a given surface together with piecewise constant

basis functions in the MM solution of the magnetic field

integral equation (MFIE) [3]. Recently, new results using

curved parametric patches in the MFIE are reported (e.g., [4],

[5]). There interpolation functions of the unknown current

values at nodal points are chosen as basis functions. The

associated difficulties for currents at sharp geometric edges can

be avoided by using “semidiscontinuous boundary elements”

[4].

On the other hand, a new class of basis functions, i.e.,

edge elements, appeared in the FEM in last decade. In these

elements, the unkowns are no longer the field values at

nodal points, but their integrals along the element edges. On

the element boundaries, only the continuity of the tangential

field components is enforced. With this kind of elements the

nonphysical solutions in the FEM associated with nodal based

elements can completely be eliminated (e.g., [6]).
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In appreciation of this, a direct and systematic application

of first-order edge elements, combined with a quadratic para-

metric description of the patch geometry, in the MM solution

of the EFIE as basis functions, is the subject of this letter.

For the sake of completeness, it should be mentioned that

basis functions for curved parametric triangular patches have

been proposed recently ([7], [8]), but from a different point

of view and vectorial finite elements for curved triangles were

reported in [9].

II. BASIS FUNCTIONS

A. Curved Parametric Triangles

A quadratic parametic triangle is uniquely determined by

its six nodal points r~ (i = 1,...,6) together with its
corresponding interpolation functions iV~(cl,&, &). & (1 <

j < 3) are the area--eoordinates with ~j & = 1 and O < &j <

1 [10]. Hence, each point T(&l, &2, (3) on this triangle can be

represented by r-(&,&, t3) = z~=l ~i~i (cl, ~2, &3).

It is assumed that the basis function W~j associated with

edge ij, which connects nodes i and j, for the magnetic field

intensity is given by (e.g., [6]): Wij = & grad~j – & gradti.

It can be shown that Wij is orthogonal to the other two edges.

With rt, = 8r/8& the normal vector n of this surface is

defined by n = ret x Te, /lTCt x I-c, 1. The basis function Bij

associated with edge ij for the current distributions on the

surface can then easily be derived:

In the derivation use is made of the well-known relation

T& - grad& = 6~j, where Sij is Kronecker symbol. liltj is
parallel to the other two edges (Fig. l(a)). Additionally, a

useful equation for basis functions previously derived is given
by divSBij = –Z/lTC, x T-c, 1, where divs means surface

divergence.

B. Curved Parametric Quadrilaterals

The basis functions for the current distributions on a curved

parametric quadrilateral can be derived in the same way as

for triangles from the corresponding edge elements. The latter

have been taken from [11]. The results are given next.
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Fig. 1. Cnrrentbasis function.B12 for(a) acurvedparametric triangle and
(b) a curved parametric quadrilateral.

The basis functions I?;j (Fig. l(b)) associated with the

corresponding edges are

B12 = ~

B34 = –

(2)

with T( = 8TJ8<, rv = arjarl, –1 < (,v < 1, and

an arbitrary point r-(~,q) on the quadrilateral is defined by

r(~,~) = E&lri~i(&,q). For the definition of a quadratic
parametric quadrilateral, eight nodal pointsri as well as their

associated interpolation functions lVi(&, q) (1 < i < 8) are

used [lO]. Inaddition, the following relation holds: divsBij =

–1/(4 lr~ xrql).

(a)

(b)

Fig. 2. Modeliug oue eighth of a circular cylindrical cavity
patches: (a)planar and(b) curved patches.

III. NUMERICAL RESULTS

by using 36

The basis functions for curved parametric patches, both

triangular and quadrilateral, have been applied in the MM

solution of the EFIE for electromagnetic scattering andradia-

tion from perfectly conducting surfaces of general shape. The

techniques described in ([l], [2]) are used. A comparison be-.

tween the numerical results by using these basis functions and

exact orother numerical results confirmes the correctness and

accuracy of both this method and its computer implementation.

It is well known that a numerical solution of an integral

equation like the EFIE includes several steps, and all of

them unavoidably introduce approximations. Obviously, the

curved parametric patches discussed are superior in accurately

modeling a given geometry to the conventional, planar ones.

But does higher accuracy in the numerical solution necessarily

result, if curved parametric patches are used instead of the

planar ones?

For special applications, this question has partly been an-

swered in [4], [5], and [7]. In this letter, cavities of different
shape with a known exact solution have been chosen as

examples, because a) there are more interior (cavity) problems

with exact solutions than exterior ones and b) the accuracy of

the numerical calculations can be judged by a single parameter.,

i.e., the resonance frequency. Both triangular and quadrilateral

patches have been used.
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TABLE I

CIRCULAR CYLINDRICAL CAWTY

No. of Type Of jfflll (MHz) k,,, (MHz) fHO1l (MHz)
Patches Patches 173.74217 188.77165 236.41801

9 curved 175.203554 187.167904 235.002541

9 planar 176.834364 189.477153 239.116101

36 curved 173.778298 188.031467 236.049617

36 planar 174.181587 188.597427 237.077181

81 curved 173.771804 188.339076 236.329638

81 planar 173.946843 188.582164 236.782408

TABLE II

SPRERICAL CAVtTY

No. of Type of ~E,O, (MHz) ~HIOl (MHz)
Patches Patches 130.91176 214.3961

25 curved 131.746862 218.136268

25 planar 134.785882 191,683343

36 curved 131.410344 216.741252

36 planar 133.493664 220.058887

81 curved 131.065613 215.192241

81 planar 131.979495 216.640183

Firstly, different resonance modes of a circular cylindrical

cavity are considered. This cavity has a radius of 1 meter

and a length of 1 meter as well. Due to the symmetry

of the considered modes, only one eighth of the surface

need be modeled. The different models with 36 planar and

curved patches are depicted in Fig. 2. The dependence of the

calculated resonance frequencies of the different modes on the

type (curved or planar) and number of patches used are listed

in Table I. Additionally, the exact resonance frequencies are

also given.

It is evident from Table I that while for the 11111 and

Hell modes the numerically calculated resonance frequencies

f~lll and fHO,, are more accurate with curved patches than

is the case with planar ones, for the Eol 1 mode the reverse

is true. The reason is not known yet. It should be remarked,

however, that although higher accuracy in geometric modeling

is achieved with curved patches, the errors due to the poor

geometric modeling in case of planar patches and errors due to

other approximations made in the numerical solution could still

compensate each other under certain “lucky” circumstances.

The second example is a spherical cavity with a radius

of 1 meter. Due to the symmetry of the resonance modes

considered, again one eighth of the surface is taken for the

calculation. The results are shown in Table II, together with

the exact ones. In this example, the advantages of the curved

parametric patches compared with the planar ones are clearly

pronounced,

IV. CONCLUSION

Curved parametric triangular and quadrilateral basis func-

tions were derived systematically from the edge elements

of the FEM and have been used successfully in the MM

solution of the EFIE. Numerical calculations of the resonance

frequencies of cavities with curved walls and known exact

solutions demonstrated that in most cases these basis functions

are superior to their planar counterparts. Although some ex-

ceptions do exist, this kind of basis functions should preferably

be used in the MM solution of integral equations.

In this letter, the curved parametric triangular and quadri-

lateral basis functions were constructed by combining the first

order edge elements with quadratic triangles and quadrilaterals.

Analogously, more basis functions can be derived from com-

binations of edge elements and triangles and quadrilaterals of

different order. Higher order edge elements can be found, for

example, in [ 12]–[ 14], while higher order triangles and quadri-

laterals are described, for example, in [10]. Extrapolating the

results achieved in ([4], [5]) by using node-based higher order

basis functions, an application of higher order edge elements

as basis functions in the EFIE should lead to a reduction in

the number of patches used and an increase in accuracy.

The systematical application of first- and higher order

basis functions in the numerical solution of different integral

equations for electromagnetic scattering and radiation will be

treated in a next step.
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