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Application of Curved Parametric Triangular
and Quadrilateral Edge Elements in the
Moment Method Solution of the EFIE

Ning Yan Zhu, Member, IEEE,, and Friedrich M. Landstorfer, Senior Member, IEEE

Abstract— The application is reported of curved parametric
triangular and quadrilateral edge elements, which have been
successfully applied in the finite-element method (FEM) in the last
10 years, as basis functions in the moment method (MM) solution
of the electric field integral equation (EFIE). In this way, an
arbitrarily shaped surface can be modeled more accurately than
with conventional planar patches. Consequently, higher accuracy
in the numerical solution can mostly be obtained, as demonstrated
by numerical examples.

I. INTRODUCTION

N THE classical papers on the MM solution of the EFIE

for electromagnetic scattering from perfectly conducting
surfaces of arbitrary shape ([1], [2]), the importance of the
continuity of the normal current components across the bound-
ary of a patch in the basis functions has been pointed out,
and basis functions which fulfil this requirement have been
introduced for planar rectangular and triangular patches. Since
then, due to their ability of modeling general geometrical
shapes, these basis functions, especially the ones for planar
triangular patches, have found wide application.

For modeling an arbitrary surface, many planar triangular
patches may be necessary, however. As a remedy, curved
parametric patches could be used instead. Actually, as early
as 1972, curved parametric quadrilaterals with 9 nodes were
used to model a given surface together with piecewise constant
basis functions in the MM solution of the magnetic field
integral equation (MFIE) [3]. Recently, new results using
curved parametric patches in the MFIE are reported (e.g., [4],
[5]). There interpolation functions of the unknown current
values at nodal points are chosen as basis functions. The
associated difficulties for currents at sharp geometric edges can
be avoided by using “semidiscontinuous boundary elements”
[4].

On the other hand, a new class of basis functions, i.e.,
edge elements, appeared in the FEM in last decade. In these
elements, the unkowns are no longer the field values at
nodal points, but their integrals along the element edges. On
the element boundaries, only the continuity of the tangential
field components is enforced. With this kind of elements the
nonphysical solutions in the FEM associated with nodal based
elements can completely be eliminated (e.g., [6]).
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In appreciation of this, a direct and systematic application
of first-order edge elements, combined with a quadratic para-
metric description of the patch geometry, in the MM solution
of the EFIE as basis functions, is the subject of this letter.
For the sake of completeness, it should be mentioned that
basis functions for curved parametric triangular patches have
been proposed recently ([7], [8]), but from a different point
of view and vectorial finite elements for curved triangles were
reported in [9].

II. Basis FUNCTIONS

A. Curved Parametric Triangles

A quadratic parametric triangle is uniquely determined by
its six nodal points r; (¢ = 1,---,6) together with its
corresponding interpolation functions N;(€1,&2,£3). § (1 <
j < 3) are the area~coordinates with 37, §; =1and 0 < §; <
1 [10]. Hence, each point (1, £y, £3) on this triangle can be
represented by r(é1,é2,€3) = o, TiNi(61, 62, 6).

It is assumed that the basis function W;; associated with
edge 47, which connects nodes ¢ and j, for the magnetic field
intensity is given by (e.g., [6]): W; = & grad{; — &; grad§;.
It can be shown that W; is orthogonal to the other two edges.

With r¢, = 9r/9¢; the normal vector n of this surface is
defined by n = r¢, X ¢, /|re, X 7¢,|. The basis function B,;;
associated with edge ij for the current distributions on the
surface can then easily be derived:

Bij =n x Wi = —(&re, +&re, )/ |re, x1e, |- (D)

In the derivation use is made of the well-known relation
re, - gradé; = 6;;, where &;; is Kronecker symbol. B,; is
parallel to the other two edges (Fig. 1(a)). Additionally, a
useful equation for basis functions previously derived is given
by divgB;; = —2/|re, x r¢,|, where divs means surface
divergence.

B. Curved Parametric Quadrilaterals

The basis functions for the current distributions on a curved
parametric quadrilateral can be derived in the same way as
for triangles from the corresponding edge elements. The latter
have been taken from [11]. The results are given next.

1051-8207/93$03.00 © 1993 IEEE



320 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 3, NO. 9, SEPTEMBER 1993

NN R R AR
PN FENERRREERRRR N
””Illitli\\“\\\\\
AN ERERRRRRARAN
T1ithyyy Y
/f,,,

'
!
t
t
t
t
t

t

!

®

Fig. 1. Current basis function B3 for (a) a curved parametric triangle and

(b) a curved parametric quadrilateral.

The basis functions B;; (Fig. 1(b)) associated with the
corresponding edges are

b l0-wr, o 10+0r

4 |re x 1y 4 Jre x|’ )
o L0t 1 g
4 |re X Tyl 4 Jre x 1y’

with r¢ = 0Or/0¢, r, = Or/On, -1 < &n < 1, and
an arbitrary point r(£,n) on the quadrilateral is defined by
r(&,n) = Ele r;N;(€,n). For the definition of a quadratic
parametric quadrilateral, eight nodal points r; as well as their
associated interpolation functions N;(§,n) (1 < ¢ < 8) are
used {10]. In addition, the following relation holds: divsB;; =

—1/(4 |re x 7).

(a)

&

Fig. 2. Modeling one eighth of a circular cylindrical cavity by using 36
patches: (a) planar and (b) curved patches.

III. NUMERICAL RESULTS

The basis functions for curved parametric patches, both
triangular and quadrilateral, have been applied in the MM
solution of the EFIE for electromagnetic scattering and radia-
tion from perfectly conducting surfaces of general shape. The
techniques described in ([1], [2]) are used. A comparison be-
tween the numerical results by using these basis functions and
exact or other numerical results confirmes the correctness and
accuracy of both this method and its computer implementation.

It is well known that a numerical solution of an integral
equation like the EFIE includes several steps, and all of
them unavoidably introduce approximations. Obviously, the
curved parametric patches discussed are superior in accurately
modeling a given geometry to the conventional, planar ones.
But does higher accuracy in the numerical solution necessatily
result, if curved parametric patches are used instead of the
planar ones?

For special applications, this question has partly been an-
swered in [4], [5], and [7]. In this letter, cavities of different
shape with a known exact solution have been chosen as
examples, because a) there are more interior (cavity) problems
with exact solutions than exterior ones and b) the accuracy of
the numerical calculations can be judged by a single parameter,
i.e., the resonance frequency. Both triangular and quadrilateral
patches have been used.
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TABLE 1
CIRCULAR CYLINDRICAL CAVITY

No.of  Typeof fm,,, MHz) fg,, (MHz) FH,,, (MHz)
Patches  Patches 173.74 217 188.77 165 236.41 801
9 curved 175.203 554 187.167 904 235.002 541
9 planar 176.834 364 189.477 153 239.116 101
36 curved 173.778 298 188.031 467 236.049 617
36 planar 174.181 587 188.597 427 237.077 181
81 curved 173.771 804 188.339 076 236.329 638
81 planar 173.946 843 188.582 164 236.782 408
TABLE II
SPHERICAL CAVITY
No. of Type of B9, (MHz) fr,0, MHz)
Patches Patches 130.91 176 214.3961
25 curved 131.746 862 218.136 268
25 planar 134.785 882 191,683 343
36 curved 131.410 344 216.741 252
36 planar 133.493 664 220.058 887
81 curved 131.065 613 215.192 241
81 planar 131.979 495 216.640 183

Firstly, different resonance modes of a circular cylindrical
cavity are considered. This cavity has a radius of 1 meter
and a length of 1 meter as well. Due to the symmetry
of the considered modes, only one eighth of the surface
need be modeled. The different models with 36 planar and
curved patches are depicted in Fig. 2. The dependence of the
calculated resonance frequencies of the different modes on the
type (curved or planar) and number of patches used are listed
in Table I. Additionally, the exact resonance frequencies are
also given.

It is evident from Table I that while for the H;y; and
Hy;1 modes the numerically calculated resonance frequencies
JH,, and fg, , are more accurate with curved patches than
is the case with planar ones, for the Fy;; mode the reverse
is true. The reason is not known yet. It should be remarked,
however, that although higher accuracy in geometric modeling
is achieved with curved patches, the errors due to the poor
geometric modeling in case of planar patches and errors due to
other approximations made in the numerical solution could still
compensate each other under certain “lucky” circumstances.

The second example is a spherical cavity with a radius
of 1 meter. Due to the symmetry of the resonance modes
considered, again one eighth of the surface is taken for the
calculation. The results are shown in Table II, together with
the exact ones. In this example, the advantages of the curved
parametric patches compared with the planar ones are clearly
pronounced.

IV. CONCLUSION

Curved parametric triangular and quadrilateral basis func-
tions were derived systematically from the edge elements
of the FEM and have been used successfully in the MM
solution of the EFIE. Numerical calculations of the resonance
frequencies of cavities with curved walls and known exact
solutions demonstrated that in most cases these basis functions

are superior to their planar counterparts. Although some ex-
ceptions do exist, this kind of basis functions should preferably
be used in the MM solution of integral equations.

In this letter, the curved parametric triangular and quadri-
lateral basis functions were constructed by combining the first
order edge elements with quadratic triangles and quadrilaterals.
Analogously, more basis functions can be derived from com-
binations of edge elements and triangles and quadrilaterals of
different order. Higher order edge elements can be found, for
example, in [12]-[14], while higher order triangles and quadri-
laterals are described, for example, in [10]. Extrapolating the
results achieved in ([4], [5]) by using node-based higher order
basis functions, an application of higher order edge elements
as basis functions in the EFIE should lead to a reduction in
the number of patches used and an increase in accuracy.

The systematical application of first- and higher order
basis functions in the numerical solution of different integral
equations for electromagnetic scattering and radiation will be
treated in a next step.
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